Some results on the reciprocal sum-degree distance of graphs
نویسندگان
چکیده
In this contribution, we first investigate sharp bounds for the reciprocal sum-degree distance of graphs with a given matching number. The corresponding extremal graphs are characterized completely. Then we explore the k-decomposition for the reciprocal sum-degree distance. Finally,we establish formulas for the reciprocal sum-degree distance of join and the Cartesian product of graphs.
منابع مشابه
Product version of reciprocal degree distance of composite graphs
A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.
متن کاملGeneralized Degree Distance of Strong Product of Graphs
In this paper, the exact formulae for the generalized degree distance, degree distance and reciprocal degree distance of strong product of a connected and the complete multipartite graph with partite sets of sizes m0, m1, . . . , mr&minus1 are obtained. Using the results obtained here, the formulae for the degree distance and reciprocal degree distance of the closed and open fence graphs are co...
متن کاملReciprocal Degree Distance of Grassmann Graphs
Recently, Hua et al. defined a new topological index based on degrees and inverse of distances between all pairs of vertices. They named this new graph invariant as reciprocal degree distance as 1 { , } ( ) ( ( ) ( ))[ ( , )] RDD(G) = u v V G d u d v d u v , where the d(u,v) denotes the distance between vertices u and v. In this paper, we compute this topological index for Grassmann graphs.
متن کاملOn reverse degree distance of unicyclic graphs
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the...
متن کاملSome results on the energy of the minimum dominating distance signless Laplacian matrix assigned to graphs
Let G be a simple connected graph. The transmission of any vertex v of a graph G is defined as the sum of distances of a vertex v from all other vertices in a graph G. Then the distance signless Laplacian matrix of G is defined as D^{Q}(G)=D(G)+Tr(G), where D(G) denotes the distance matrix of graphs and Tr(G) is the diagonal matrix of vertex transmissions of G. For a given minimum dominating se...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Comb. Optim.
دوره 30 شماره
صفحات -
تاریخ انتشار 2015